2,455 research outputs found

    Study of ground state phases for spin-1/2 Falicov-Kimball model on a triangular lattice

    Full text link
    The spin-dependent Falicov-Kimball model (FKM) is studied on a triangular lattice using numerical diagonalization technique and Monte-Carlo simulation algorithm. Magnetic properties have been explored for different values of parameters: on-site Coulomb correlation UU, exchange interaction JJ and filling of electrons. We have found that the ground state configurations exhibit long range Ne\`el order, ferromagnetism or a mixture of both as JJ is varied. The magnetic moments of itinerant (dd) and localized (ff) electrons are also studied. For the one-fourth filling case we found no magnetic moment from dd- and ff-electrons for UU less than a critical value.Comment: 6 pages, 8 figure

    An extended Falicov-Kimball model on a triangular lattice

    Full text link
    The combined effect of frustration and correlation in electrons is a matter of considerable interest of late. In this context a Falicov-Kimball model on a triangular lattice with two localized states, relevant for certain correlated systems, is considered. Making use of the local symmetries of the model, our numerical study reveals a number of orbital ordered ground states, tuned by the small changes in parameters while quantum fluctuations between the localized and extended states produce homogeneous mixed valence. The inversion symmetry of the Hamiltonian is broken by most of these ordered states leading to orbitally driven ferroelectricity. We demonstrate that there is no spontaneous symmetry breaking when the ground state is inhomogeneous. The study could be relevant for frustrated systems like GdI2GdI_2, NaTiO2NaTiO_2 (in its low temperature C2/m phase) where two Mott localized states couple to a conduction band.Comment: 6 pages, 8 figure

    Does the Type of Records Affect the Estimates of the Parameters?

    Get PDF
    The maximum likelihood estimation of the unknown parameters of inverse Rayleigh and exponential distributions are discussed based on lower and upper records. The aim is to study the effect of the type of records on the behavior of the corresponding estimators. Mean squared errors are calculated through simulation to study the behavior of the estimators. The results shall be of interest to those situations where the data can be obtained in the form of either of the two types of records and the experimenter must decide between these two for estimation of the unknown parameters of the distribution

    Current–voltage characteristics of polar heterostructure junctions

    Full text link
    We report calculations that show that a metal–polar semiconductor heterostructure can exhibit highly controllable nonlinear current–voltage characteristics. A change in barrier thickness can alter the characteristics from Schottky-like to ohmic in different bias regimes. The origin of these unusual effects is a large electric field (>106 V/cm)(>106 V/cm) and high sheet charge(∼1013–1014cm−2)(∼1013–1014cm−2) without doping, in the polar heterostructure. Theoretical calculation of the tunneling current density in these systems is done in this work. The results indicate that very interesting nonlinear behavior is shown by these systems, even in the undoped case. The choice of suitable compositions of the materials and thicknesses can be used to tailor devices with desired characteristics. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71184/2/JAPIAU-91-5-2989-1.pd

    Encyclopedia of Snow, Ice and Glaciers

    Get PDF
    The objective of this encyclopedia is to present the current state of scientific understanding of various aspects of earth’s cryosphere – snow, glaciers, ice caps, ice sheets, ice shelves, sea ice, river and lake ice, and permafrost – and their related interdisciplinary connections under one umbrella. Therefore, every effort has been made to provide a comprehensive coverage of cryosphere by including a broad array of topics, such as the atmospheric processes responsible for snow formation; snowfall observations; snow cover and snow surveys; transformation of snow to ice and changes in their properties; classification of ice and glaciers and their worldwide distribution; glaciation and ice ages; glacier dynamics; glacier surface and subsurface characteristics; geomorphic processes and landscape formation; hydrology and sedimentary systems; hydrochemical and isotopic properties; permafrost modeling; hazards caused by cryospheric changes; trends of glacier retreat on a global scale along with the impact of climate change; and many more quantitative estimates of various glacier parameters, such as degree-day, mass balance, extent and volume, and downwasting. Also included are articles on GPS application, and satellite image application in glaciology; GPR analysis; and sea level rise

    Comparative Study of New and Traditional Estimators of a New Lifetime Model

    Get PDF
    In this article, we have studied the behavior of estimators of parameter of a new lifetime model, suggested by Maurya et al. (2016), obtained by using methods of moments, maximum likelihood, maximum product spacing, least squares, weighted least squares, percentile, Cramer-von-Mises, Anderson-Darling and Right-tailed Anderson-Darling. Comparison of the estimators has been done on the basis of their mean square errors, biases, absolute and maximum absolute differences between empirical and estimated distribution function and a newly proposed criterion. We have also obtained the asymptomatic confidence interval and associated coverage probability for the parameter
    corecore